Redesigning the hydrophobic core of a model beta-sheet protein: destabilizing traps through a threading approach.

نویسندگان

  • J M Sorenson
  • T Head-Gordon
چکیده

An off-lattice 46-bead model of a small all-beta protein has been recently criticized for possessing too many traps and long-lived intermediates compared with the folding energy landscape predicted for real proteins and models using the principle of minimal frustration. Using a novel sequence design approach based on threading for finding beneficial mutations for destabilizing traps, we proposed three new sequences for folding in the beta-sheet model. Simulated annealing on these sequences found the global minimum more reliably, indicative of a smoother energy landscape, and simulated thermodynamic variables found evidence for a more cooperative collapse transition, lowering of the collapse temperature, and higher folding temperatures. Folding and unfolding kinetics were acquired by calculating first-passage times, and the new sequences were found to fold significantly faster than the original sequence, with a concomitant lowering of the glass temperature, although none of the sequences have highly stable native structures. The new sequences found here are more representative of real proteins and are good folders in the T(f) > T(g) sense, and they should prove useful in future studies of the details of transition states and the nature of folding intermediates in the context of simplified folding models. These results show that our sequence design approach using threading can improve models possessing glasslike folding dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of single-layer beta-sheets without a hydrophobic core.

The hydrophobic effect is the main thermodynamic driving force in the folding of water-soluble proteins. Exclusion of nonpolar moieties from aqueous solvent results in the formation of a hydrophobic core in a protein, which has been generally considered essential for specifying and stabilizing the folded structures of proteins. Outer surface protein A (OspA) from Borrelia burgdorferi contains a...

متن کامل

Study of the correlation of secondary structure of beta-amyloid peptide (Abeta40) with the hydrophobic exposure under different conditions.

Abeta is the core protein of extracellular plaque of Alzheimer's disease, and its neurotoxicity is relative to its conformation. In the current work, the effects of various factors, such as pH, ionic strength and lipid membranes, on the secondary structure of Abeta were studied by circular dichroism. In addition, we detected the exposure of hydrophobic sites of Abeta under different conditions ...

متن کامل

Probing the folding free energy landscape of the Src-SH3 protein domain.

The mechanism and thermodynamics of folding of the Src homology 3 (SH3) protein domain are characterized at an atomic level through molecular dynamics with importance sampling. This methodology enables the construction of the folding free energy landscape of the protein as a function of representative reaction coordinates. We observe that folding proceeds in a downhill manner under native condi...

متن کامل

NMR structure of an archaeal homologue of ribonuclease P protein Rpp29.

A protein component of the Archaeoglobus fulgidus RNase P was expressed in Escherichia coli, purified, and structurally characterized using multidimensional NMR methods. The dominant structural feature of this 11 kDa protein is a sheet of six antiparallel beta-strands, wrapped around a core of conserved hydrophobic amino acids. Amide proton exchange and (15)N relaxation rate data provide eviden...

متن کامل

Events in the kinetic folding pathway of a small, all beta-sheet protein.

The folding of cardiotoxin analogue III (CTX III), a small (60 amino acids), all beta-sheet protein from the venom of the Taiwan Cobra (Naja naja atra) is here investigated. The folding kinetics is monitored by using a variety of techniques such as NMR, fluorescence, and circular dichroism spectroscopy. The folding of the protein is complete within a time scale of 200 ms. The earliest detectabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proteins

دوره 37 4  شماره 

صفحات  -

تاریخ انتشار 1999